Spatio-temporal texture modelling for real-time crowd anomaly detection

نویسندگان

  • Jing Wang
  • Zhijie Xu
چکیده

With the rapidly increasing demands from surveillance and security industries, crowd behaviour analysis has become one of the hotly pursued video event detection frontiers within the computer vision arena in recent years. This research has investigated innovative crowd behaviour detection approaches based on statistical crowd features extracted from video footages. In this paper, a new crowd video anomaly detection algorithm has been developed based on analysing the extracted spatio-temporal textures. The algorithm has been designed for real-time applications by deploying low-level statistical features and alleviating complicated machine learning and recognition processes. In the experiments, the system has been proven a valid solution for detecting anomaly behaviours without strong assumptions on the nature of crowds, for example, subjects and density. The developed prototype shows improved adaptability and efficiency against chosen

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crowd Anomaly Detection for Automated Video Surveillance

Video-based crowd behaviour detection aims at tackling challenging problems such as automating and identifying changing crowd behaviours under complex real life situations. In this paper, real-time crowd anomaly detection algorithms have been investigated. Based on the spatio-temporal video volume concept, an innovative spatio-temporal texture model has been proposed in this research for its ri...

متن کامل

Detecting Violent Crowds using Temporal Analysis of GLCM Texture

The severity of sustained injury resulting from assault-related violence can be minimized by reducing detection time [10,28]. However, it has been shown that human operators perform poorly at detecting events found in video footage when presented with simultaneous feeds [30]. We utilize computer vision techniques to develop an automated method of violence detection that can aid a human operator...

متن کامل

Social network model for crowd anomaly detection and localization

In this work, we propose an unsupervised approach for crowd scene anomaly detection and localization using a social network model. Using a window-based approach, a video scene is first partitioned at spatial and temporal levels, and a set of spatio-temporal cuboids is constructed. Objects exhibiting scene dynamics are detected and the crowd behavior in each cuboid is modeled using local social ...

متن کامل

Spatio-temporal agent based simulation of COVID-19 disease and investigating the effect of vaccination (case study: Urmia)

Proper management of epidemic diseases such as Covid-19 is very important because of its effects on the economy, culture and society of nations. By applying various control strategies such as closing schools, restricting night traffic and mass vaccination program, the spread of this disease has been somewhat controlled but not completely stopped. The main goal of this research is to provide a f...

متن کامل

Anomaly Detection via Local Coordinate Factorization and Spatio-Temporal Pyramid

Anomaly detection, which aims to discover anomalous events, defined as having a low likelihood of occurrence, from surveillance videos, has attracted increasing interest and is still a challenge in computer vision community. In this paper, we propose an efficient anomaly detection approach which can perform both real-time and multi-scale detection. Our approach can handle the change of backgrou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2016